

Ensemble learning

Fangfang Chen

Data Mining Lab, Big Data Research Center, UESTC Email: fangfchen@126.com

Outline

数据挖掘实验室

Data Mining Lab

1 Introduction

- Background
- Concept of ensemble learning
- Steps of ensemble learning

2 Ensemble methods

- Bagging
- Boosting
- Comparison between Bagging & Boosting

1 Introduction

数据挖掘实验室

Data Mining Lab

1.1 Background

1.2 Concept of ensemble learning

1.3 Steps of ensemble learning

- Weak classifier slightly better than random guess (Easy to get)
- Strong classifier can make very accurate predictions (Hard to get!)

1.2 Concept of ensemble learning

数据挖掘实验室

Ensemble learning

Multiple classifiers are trained and combined to solve a same problem.

1.3 Steps of ensemble learning

数据挖掘实

Two steps:

1、Train a number of base(weak) classifiers

- **Common methods Sampling:**
 - Generate a number of samples according to the training data set

— Train the base classifiers from these different samples (but using the same learning algorithm)

2. Combine the base classifiers to use

- **Common methods:**
 - \checkmark Majority voting (e.g. Bagging)
 - Weighted majority voting (e.g. Boosting)

2 Ensemble methods

数据挖掘实验室

Data Mining Lab

2.1 Bagging

- Framework
- Pseudo-code
- Features

2.2 Boosting

- Framework
- Adaboost algorithm
- Pseudo-code
- A example of Adaboost
- Features

2.3 Comparison between Bagging & Boosting

数据挖掘实验室

Data Mining Lab

Framework

1、Training

— Sample the training data set randomly with replacement (有放回抽取)

The size of a sample is as the same as that of the training data set generally

2、Combining

- Majority voting
- The most-voted class is predicted

2.1 Bagging

LESS IS MOR

数据挖掘实验室

Data Mining Lab

• Framework

2.1 Bagging

数据挖掘实验室

Data Mining Lab

Pseudo-code

Input: Data set $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\};$ Base learning algorithm \mathcal{L} ; Number of learning rounds T. The number of base classifiers

Process:

for $t = 1, \dots, T$: $D_t = Bootstrap(D)$; % Generate a bootstrap sample from D $h_t = \mathcal{L}(D_t)$ % Train a base learner h_t from the bootstrap sample

end.

Output: $H(x) = \operatorname{argmax}_{y \in \mathcal{Y}} \sum_{t=1}^{T} 1(y = h_t(x))$ % the value of 1(a) is 1 if a is true and 0 otherwise

Find the most-voted class

数据挖掘实验室

Data Mining Lab

• Features

- ✓ Samples are independent
- ✓ Base classifiers can be generated in a parallel style
 Save time
- ✓ For unstable learning algorithm bagging works well (e.g. Decision tree, neural network)

- Framework
- Main idea:

Learn the examples with high error rate intensively

- 1、Training
 - Assign equal weights (probabilities) to all the training examples
 - Train a base classifier from the training data set
 - Test it , and update the weights (Increasing the weights of incorrectly classified examples)
 - Train next classifier from updated weight distribution(consider more about incorrect examples), repeat for T times
- Sample according to the weight distribution if needed
- 2、Combining
 - Weighted majority voting (linear combination)

Data Mining Lab

Framework

数据挖掘实验室

Data Mining Lab

Adaboost algorithm

Given:

 $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X, y_i \in \{-1, +1\}$

(1) Initialization:

$$D_1(i) = \frac{1}{m}, i = 1, \dots, m$$

- Assign equal weights (probabilities) to all the training examples
- The sum of weights is equal to 1 a distribution

Adaboost algorithm

(2) Training: t = 1, ..., T

a. Generate a classifier which minimizes error

 $h_t: X \to \{-1, +1\}$

$$h_t = \arg\min_{h_j} \varepsilon_j$$

b. Measure the error of \mathbf{h}_{t}

$$\varepsilon_{t} = \sum_{i=1}^{m} D_{t}(i) [y_{i} \neq h_{t}(x_{i})]$$

- According to the weight distribution D_t
- Reflect the effect of weights

- Adaboost algorithm
 - (2) Training: t = 1, ..., T
 - c. Determine the weight of classifier h_t

- Denote the significance or reliability •
- Monotone decreasing
- When $\varepsilon_t < 1/2$, $\alpha_t > 0$; when $\varepsilon_t > 1/2$, $\alpha_t < 0$

Adaboost algorithm

(2) Training: t = 1, ..., T

d. Update distribution

$$D_{t+1}(i) = \frac{D_t(i) \exp[-\alpha_t y_i h_t(x_i)]}{Z_t}, Z_t \text{ is for normalization}$$
$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t}, h_t(x_i) = y_i \\ e^{\alpha_t}, h_t(x_i) \neq y_i \end{cases}$$

数据挖掘实验室

Data Mining Lab

• The weight of incorrect example amplified by $e^{-\alpha t}$ than correct example

$$\begin{aligned} \alpha_t &> 0(\epsilon_t < \frac{1}{2}) \quad \text{and} \quad h_t(x_i) \neq y_i \\ & \text{or} \\ \alpha_t &< 0(\epsilon_t > \frac{1}{2}) \quad \text{and} \quad h_t(x_i) = y_i \end{aligned}$$

The weight is increased when

(3) Combining:

$$sign\left(H(x) = \sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

- Sign of H(x) the result of classification
- Absolute value of H(x) the reliability of classification
- The sum of αt is not equal to 1

数据挖掘实验室

Data Mining Lab

Pseudo-code

Input: Data set $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_m, y_m)\};$ Base learning algorithm $\mathcal{L};$ Number of learning rounds T. Process: $D_1(i) = 1/m$, % Initialize the weight distribution

 $\begin{array}{ll} D_1(i) = 1/m. & \% \text{ Initialize the weight distribution} \\ \text{for } t = 1, \cdots, T; \\ h_t = \mathcal{L}(\mathcal{D}, D_t); & \% \text{ Train a base learner } h_t \text{ from } \mathcal{D} \text{ using distribution } D_t \\ \epsilon_t = \Pr_{i \sim D_i}[h_t(\boldsymbol{x}_i \neq y_i)]; & \% \text{ Measure the error of } h_t \\ \alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}; & \% \text{ Determine the weight of } h_t \\ D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \exp(-\alpha_t) \text{ if } h_t(\boldsymbol{x}_i) = y_i \\ = \frac{D_t(i)\exp(-\alpha_t y_i h_t(\boldsymbol{x}_i))}{Z_t} & \% \text{ Update the distribution, where } Z_t \text{ is a normalization} \\ & \% \text{ factor which enables } D_{t+1} \text{ to be a distribution} \end{array}$

end.

Output: $H(\boldsymbol{x}) = \text{sign} (f(\boldsymbol{x})) = \text{sign} \sum_{t=1}^{T} \alpha_t h_t(\boldsymbol{x})$

数据挖掘实验室

Data Mining Lab

- A example of Adaboost
 - Training Data:

No.	1	2	3	4	5	6	7	8	9	10	1	- •	•	•				•	•	•	
x	0	1	2	3	4	5	6	7	8	9	0	-									
у	1	1	1	-1	-1	-1	1	1	1	-1	-1	-			•	•	٠				♦
												0		2		4		6		8	10

1

• Initialization:

$$D_1 = (W_{11}, W_{12}, ..., W_{110})$$
$$W_{1i} = 0.1, i = 1, 2, ..., 10$$

数据挖掘实验室

Data Mining Lab

A example of Adaboost

数据挖掘实验室

Data Mining Lab

A example of Adaboost

 $h_{2}(x) = \begin{cases} 1, x < 8.5 \\ -1, x > 8.5 \end{cases} \qquad \epsilon_{2} = 0.2143 \quad \alpha_{2} = 0.6496 \end{cases}$ $D_{3} = (0.046, 0.046, 0.046, 0.167, 0.167, 0.167, 0.106, 0.106, 0.106, 0.046)$

数据挖掘实验室

Data Mining Lab

A example of Adaboost

 $h_{3}(x) = \begin{cases} 1, x > 5.5 \\ -1, x < 5.5 \end{cases} \qquad \epsilon_{3} = 0.182 \quad \alpha_{3} = 0.7514 \\ D_{3} = (0.125, 0.125, 0.125, 0.102, 0.102, 0.102, 0.065, 0.065, 0.065, 0.125) \end{cases}$

数据挖掘实验室

Data Mining Lab

- A example of Adaboost
- Combining:

$$h_{1}(x) = \begin{cases} 1, x < 2.5 \\ -1, x > 2.5 \end{cases} \quad h_{2}(x) = \begin{cases} 1, x < 8.5 \\ -1, x > 8.5 \end{cases} \quad h_{3}(x) = \begin{cases} 1, x > 5.5 \\ -1, x < 5.5 \end{cases}$$
$$H(x) = sign[0.4236h_{1}(x) + 0.6496h_{2}(x) + 0.7514h_{3}(x)] \end{cases}$$

• The number of incorrectly classified examples is 0.

Data Mining Lab

- Features
- ✓ Samples are not independent
- Base classifiers should be generated in a sequential style (the generation of a base classifier has influence on the generation of subsequent classifiers)
- Empirical observations show that Boosting often does not suffer from overfitting even after a large number of rounds (but overfitting may occur on some special training data)

2.3 Comparison between Bagging & Boosting

数据挖掘实验室

Data Mining Lab

Bagging

Sampling

Ramdomly Independent

Boosting

According to the error Not independent

Generating style

Parallel

Sequential

Combining method

Majority voting

Weighted majority voting

Performance

Better than single classifier

Better than Bagging

Fangfang Chen Yingcai Experimental School fangfchen@126.com

