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1.1 Background

• Classfication

Training Data
T={(x1,y1),(x2,y2)...(xm,ym)}

Classifier
Y=h(X)

Learning algorithm

(Decision tree and so on...) 

xm+1 ym+1

• Weak classifier    —   slightly better than random guess     (Easy to get)

• Strong classifier  —   can make very accurate predictions  (Hard to get!)
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1.2 Concept of ensemble learning

Training Data

Weak 
classifier 1

Weak 
classifier 2

Weak 
classifier T

...

Strong classifier 

Training

Combining

Decision

• Ensemble learning
Multiple classifiers are trained and combined to solve 
a same problem.
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1.3 Steps of ensemble learning

• Two steps:

1、Train a number of base(weak) classifiers
• Common methods — Sampling:

— Generate a number of samples according to the training data set
— Train the base  classifiers from these different samples (but 
using the same learning algorithm)

2、Combine the base classifiers to use
• Common methods:

 Majority voting  (e.g. Bagging) 
 Weighted majority voting  (e.g. Boosting)
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2 Ensemble methods

2.1 Bagging
• Framework
• Pseudo-code
• Features

2.2 Boosting
• Framework
• Adaboost algorithm
• Pseudo-code
• A example of Adaboost
• Features

2.3 Comparison between Bagging & Boosting
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2.1 Bagging

• Framework

1、Training 
— Sample the training data set randomly with replacement 
(有放回抽取)
— The size of a sample is as the same as that of the training 
data set generally

2、Combining
— Majority voting
— The most-voted class is predicted
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2.1 Bagging

• Framework

Training 
Data

Base 
classifier h1

Base 
classifier h2

Base 
classifier hT

Sample D1

Sample D2

Sample DT

...
Training

Majority
vote

CombiningSampling
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2.1 Bagging

• Pseudo-code

The number of base classifiers

Complete name of bagging is Bootstrap aggregating

Find the most-voted class
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2.1 Bagging

• Features

 Samples are independent

 Base classifiers can be generated in a parallel style
— Save time

  For unstable learning algorithm bagging works well
      (e.g. Decision tree, neural network) 
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2.2 Boosting

• Framework

1、Training 
— Assign equal weights (probabilities) to all the training examples 
— Train a base classifier from the training data set
— Test it , and update the weights (Increasing the weights of incorrectly 
classified examples)
— Train next classifier from updated weight distribution(consider more 
about incorrect examples), repeat for T times

• Sample according to the weight distribution if needed
2、Combining

— Weighted majority voting (linear combination)

• Main idea:
Learn the examples with high error rate intensively  
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2.2 Boosting

• Framework

Training 
Data

Base 
classifier h1

Base 
classifier h2

Base 
classifier hT

Weight 
distribution D1

Weight 
distribution D2

Weight 
distribution DT

...

Training

Weighted 
majority voting

1
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T
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tT th xH x sign 



 
  

 


Compute error ε1 

α1

α2

αT
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2.2 Boosting

• Adaboost algorithm

Given:
1 1  where ( , ), , ( , ) , { 1, 1}m m i ix y x y x X y   

(1) Initialization: 

1
1( ) , 1, ,mD i i m  

• Assign equal weights (probabilities) to all the training examples

• The sum of weights is equal to 1 — a distribution
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2.2 Boosting

• Adaboost algorithm

(2) Training: 1, ,t T 

: { 1, 1}th X   

a. Generate a classifier which minimizes error 

1
 where arg min ( )[ ( )]

j

m

t j j t i j i
ih

h D i y h x 


  

b. Measure the error of ht 

1
 where arg min ( )[ ( )]

j

m

t j j t i j i
ih

h D i y h x 


  t t

• According to the weight distribution Dt  
• Reflect the effect of weights 
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2.2 Boosting

• Adaboost algorithm

(2) Training: 1, ,t T 

11 ln
2

t
t

t







c. Determine the weight of classifier ht 

• Denote the significance or reliability 
• Monotone decreasing
• Whenεt < 1/2, αt > 0; whenεt > 1/2, αt < 0
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2.2 Boosting

• Adaboost algorithm

(2) Training: 1, ,t T 
11 ln

2
t

t
t







d. Update distribution 
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• The weight is increased  when 
iittt y)x(hand)

2
1(0 

iittt y)x(hand)
2
1(0 

or

• The weight of incorrect example amplified by e-αt  than correct example
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2.2 Boosting

• Adaboost algorithm

(3) Combining: 

• Sign of H(x) — the result of classification
• Absolute value of H(x) — the reliability of classification
• The sum of αt is not equal to 1 

1
( ) ( )

T

t t
t

sign H x h x
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2.2 Boosting

• Pseudo-code
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2.2 Boosting

• A example of Adaboost

No.   1     2      3      4      5      6     7     8     9    10

x       0     1     2      3      4      5      6     7     8     9

y      1     1     1     -1     -1     -1     1     1     1     -1

• Training Data:

• Initialization:

)w,...,w,w(D 11012111 

10,...,2,1i,1.0w i1 

0 2 4 6 8 10

-1

0

1
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0 2 4 6 8 10

-1

0

1

2.2 Boosting

• A example of Adaboost

• t=1:









5.2x,1

5.2x,1
)x(h1 4236.03.0 11 

)071.0,167.0,167.0,167.0,071.0,071.0,071.0,071.0,071.0,071.0(D2 
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2.2 Boosting

• A example of Adaboost

• t=2:









5.8x,1

5.8x,1
)x(h2 6496.02143.0 22 

)046.0,106.0,106.0,106.0,167.0,167.0,167.0,046.0,046.0,046.0(D3 



数据挖掘实验室

Data Mining Lab
DM
LESS IS MORE

2.2 Boosting

• A example of Adaboost

• t=3:









5.5x,1

5.5x,1
)x(h3 7514.0182.0 33 

)125.0,065.0,065.0,065.0,102.0,102.0,102.0,125.0,125.0,125.0(D3 
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2.2 Boosting

• A example of Adaboost

• Combining:









5.5x,1

5.5x,1
)x(h3









5.8x,1

5.8x,1
)x(h2









5.2x,1

5.2x,1
)x(h1

)]x(h7514.0)x(h6496.0)x(h4236.0[sign)x(H 321 

• The number of incorrectly classified examples is 0.
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2.2 Boosting

• Features

 Samples are not independent 

 Base classifiers should be generated in a sequential style 
(the generation of a base classifier has influence on the 
generation of subsequent classifiers)

  Empirical observations show that Boosting often does not 
suffer from overfitting even after a large number of rounds 
(but overfitting may occur on some special training data)
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2.3 Comparison between Bagging & Boosting

Bagging Boosting

Sampling Ramdomly
Independent

According to the error
Not independent

Generating
style Parallel Sequential

Combining
method

Weighted majority votingMajority voting

Performance
Better than 
single classifier

Better than Bagging
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